AECL CANDU EACL CANDU

Fundamentals of CANDU Reactor Nuclear Design A Lecture Series given at Trieste 22 January – 28 March 1980

TDAI-244

REFERENCE 1

1980 August

FUNDAMENTALS OF CANDU REACTOR NUCLEAR DESIGN

A Lecture Series

by

A.A. Pasanen

ABSTRACT

This document contains the material presented in seven lectures at the Winter College on Nuclear Physics and Reactors at Trieste 22 January - 28 March, 1980. They constitute part of the course on Operational Physics of Power Reactors given during March. Specifically, the lectures are written for Part 1.1 of the first week's lectures "Fundamentals of Pressurized Heavy Water Reactors". However, some of the topics presented during the second week pertaining to "Power Operations, Measurement and Methods of Calculation of Power Distributions" are also covered in this overview of CANDU nuclear design.

A physical description of a CANDU reactor of the 600 MWe size is given, with particular emphasis on the core design and nuclear performance characteristics. The methodology used in the physics analysis associated with the design process is outlined, and typical results of the analysis presented. Finally, the determination of the initial fuel load is described and the physics analysis and tests associated with commissioning are summarized.

> ATOMIC ENERGY OF CANADA LIMITED ENGINEERING COMPANY SHERIDAN PARK RESEARCH COMMUNITY MISSISSAUGA, ONTARIO LSK 1B2

TDA1-244

CONTENTS

١

-

ABSTRACT

Ĩ

 $\overline{\mathbb{O}}$

•

1.0	INTR	DOUCTION		1
2.0	PHYS	ICAL DESC	CRIPTION OF THE CANDU-600	2
	2.1	The Pre	essure Tube Concept	2
	2.2	Reactor	r Calandria	3
	2.3	Reactiv	vity Devices	3
	2.4	Core De	esign Details	6
		2.4.1	Liquid Zone Controllers	7
		2.4.2	Mechanical Control Absorbers	8
		2.4.3	Adjuster Rod Absorber System	9
		2.4.4	Moderator Poison	10
	-	2.4.5	Shutdown Systems	П
		2.4.6	Shutoff Rods	11
		2.4.7	Liquid Poison Injection System	11
		2.4.8	Regional Overpower Protective system	12
3.0	METHO	DOLOGY F	FOR REACTOR PHYSICS ANALYSIS IN CORE DESIGN	26
	3.1	Summary	<i>i</i>	26
		3.1.1	Engineering Requirements	26
		3.1.2	Lattice (Cell) Calculations	27
		3.1.3	Simulation Of Reactivity Devices	27
		3.1.4	Core Calculations	27
		3.1.5	Kinetic Studies	27
		3.1.6	Reactor Stability And Control	28
		3.1.7	Fuel Burnup And Management	28
		3.1.8	Flux Mapping	28
	3.2	CANDU F	Physics Methodology	29
		3.2.1	Introduction	29
		3.2.2	Conceptual Stage Design Analysis	29

TDA1-244

.

PAGE

		3.2.2.1	Calculation	Of Lattice Parameters	30
			3.2.2.1.1	Functional Description Of Lattice Parameter Programs	30
			3.2.2.1.2	Special Features For CANDU Applications	33
		3.2.2.2	Typical POW The CANDU-60	DERPUFS Calculations For DO	36
			3.2.2.2.1	Four-Factor Data	36
			3.2.2.2.2	Fuel Temperature Reactivity Effects	37
			3.2.2.2.3	Coolant Temperature Reactivity Effects	38
			3.2.2.2.4	Loss-Of-Coolant Reactivity Effect	38
			3.2.2.2.5	Moderator Temperature Reactivity Effect	39
			3.2.2.2.6	Reactivity Effect Of Boron In The Moderator	40
	3.2.3	Core Desig	gn Analysis		40
		3.2.3.1	Core Size C	onsiderations	40
		3.2.3.2	Core Design	Methodology	42
			3.2.3.2.1	Numerical Modelling Of The Core	42
			3.2.3.2.2	Locating In-Core Devices	46
	3.2.4	Time Depe	ndent Analys	es	56
		3.2.4.1	Xenon Trans	ients	57
		3.2.4.2	Shutdown Sys	stem Performance Analysis	59
		3.2.4.3	Modelling 0	f Loss Of Coolant Accidents	63
	3.2.5	On-Line F	lux Mapping		66
ודואו	AL FUEL	LOADING DE	TERMINATION		105
4.1	General	·	•		105
4.2	Criteri Charact	a For Dete eristics	rmining Init	ial Fuel Load	106
	4.2.1	Fuel Bund	le Modificat	ions	106
	4.2.2	Use of Du	mmy Bundles		107
4.3	Determi CANDU-6	nation Of 00	The Initial	Fuel Load For The	107

-

4.0

Ĵ.

ن المنابع

PAGE

5.0	PHYS	ICS ANALY	SIS AND TESTS RELATED TO COMMISSIONING	121
-	5.1	General		121
	5.2	Physics	Tests	121
		5.2.1	Approach To Critical	121
		5.2.2	Calibration Of Zone Control System	124
		5.2.3	Reactivity Calibration Of Individual Shutoff Rods	125
		5.2.4	Calibration Of Mechanical Control Absorbers	126
		5.2.5	Calibration Of Individual Adjuster Rods	126
		5.2.6	Flux Mapping Measurements And Reactivity Calibrations Of Groups Of Reactivity Devices	127
•		5.2.7	Dynamic Tests	129
		5.2.8	Heat Transport System Temperature	129
		5.2.9	Moderator Temperature Coefficient Measurement	130
		5.2.10	Some Typical Results From Low Power Physics Tests	130
			5.2.10.1 Approach To Critical For Bruce A	130
			5.2.10.2 Shutdown System Dynamic Tests	131
			5.2.10.3 Flux Distribution Measurements	-133
			5.2.10.4 Zone Control System Calibration	134
	8181	LOGRAPHY		154

1-

NUM	BER
-----	-----

.

 $\langle \hat{\boldsymbol{\zeta}} \rangle$

0

 \bigcirc

TITLE

•

•

2.1-1	Reactor Assembly	13
2.1-2	Schematic Of CANDU-PHW Lattice	14
2_2-1	Concrete Calandria Vault	15
2.3-1	Reactor GA Plan	16
2.3-2	Reactor General Assembly (Section)	17
2.3-3	Reactor Layout - Elevation	18
2.4-1	Variation Of Reactivity With Lattice Pitch For CANDU-PHW Lattice	19
2.4-2	Relation Of Zone Control Units (ZCU) To The Fourteen Zones And The Reactor Zone Control Detector Assemblies VFD 2, 3, 9, 18, 23, 25	20
2.4-3	Position Of Zone Control Detectors With Respect To Zone Compartments	21
2.4-4	Vertical Flux Detector Assembly Locations	22
2.4-5	Flux Mapping Detector Locations - View 1	23
2.4-6	Calandria Plan Showing SDS1 and SDS2 Detectors (Top View)	24
2.4-7	(Continued) View 3	25
3.1-1	A Simplified Chart Of The Physics Analysis Of PHW Detectors	68
3.2-1	Lattice Cell For 37-Element Fuel	69
3.2-2	28-Element Uranium Oxide Lattice, Material Buckling Versus Pitch	70
3.2-3	28-Element Uranium Oxide Lattice, Fuel Wescott-R Versus Pitch	71
3.2-4	28-Element Uranium Oxide Lattice, Fuel Neutron . Temperature Versus Pitch	72
3.2-5	28-Element Uranium Oxide Lattice Ratio Of Thermal Flux In Moderator To Thermal Flux In Fuel Versus Pitch	73
3.2-6	37-Element Uranium Oxide Lattice, Material Buckling Versus Pitch	74
3.2-7	37-Element Uranium Oxide Lattice, Fuel Wescott-R Versus Pitch	75
3.2-8	37-Element Uranium Oxide Lattice, Fuel Neutron Temperature Versus Pitch	76

TDA1-244

LIST OF FIGURES (CONT'D)

NUMBER

TITLE

3.2-9	28-Element Uranium Oxide Lattice, Void Coefficient Of Material Buckling Versus Pitch	77
3.2-10	37-Element Uranium Oxide Lattice, Void Coefficient Of Material Buckling Versus Pitch	78
3.2-11	Bundle Average Nuclide Ratios, Comparison Setween Modified POWDERPUFS-V and Experiment	79
3.2-12	Power Density Distribution In Single Pickering UO ₂ Fuel Pins	80
3.2-13	Variation Of Lattice Parameters With Irradiation	81
3.2-14	Fuel Temperature Reactivity Coefficient	82
3.2-15	Reactivity Change Due To Changing The Fuel Tamperature	83
3.2-16	Coolant Temperature Coefficient	84
3.2-17	Reactivity Change Due To Change In Coolant Temperature Including Density Effect	85
3.2-18	Coolant Void Reactivity At Full Power	86
3.2-19	Moderator Temperature Coefficient At Full Power	87
3.2-20	Variation Of Boron Coefficient With Irradiation	88
3.2-21	600 MW Reactor Model Face View Showing Adjuster Rod Types	89
3.2-22	600 MW Reactor Model Face View Showing Zone Controllers And Water Levels Assumed	90
3.2-23	600 MW Reactor Model - Top View Showing Adjuster And Zone Controller Locations	91
3.2-24	Typical Supercell Model	92
3.2-25	Model Used in Sample Calculation	93
3.2-26	Comparison Between Measured And Calculated Radial Flux Distribution In The Bruce A Core With 28 Shutoff Units Asymmetrically Inserted	94
3.2-27	Transient After A Refuelling Perturbation, Zone Control System Operating	95
3.2-28	Reactor Power Transient During A Startup Following A 30 Min. Shutdown	96
3.2-29	Poison Injection Nozzles	97
3.2-30	CHEBY Full Core Model Used For Studying Worth Of Poison Injection System	98

.

ŧ

LIST OF FIGURES (CONT'D)

NUMBER

TITLE

3.2-31	SDS2 Test - 6 Tanks	99
3.2-32	CANDU Reactor - Simplified Flow Diagram	100
3.2-33	Coolant Density Change And Core Reactivity For 100% Break In Inlet Header	101
3.2-34	Hot Bundle Power Transient	102
3.2-35	Hypothetical Reactivity Excursions	103
3.2-36	Sensitivity Of Power Excursion to 1	104
3.2-37	Dynamic <u>system</u> Reactivity vs Time After Inlet Header Break	104A
4.3-1	Reactivity Of 37-Element Depleted Fuel Versus	110
4.3-2	Variation Of Excess Reactivity During Initial Burnup Period, FMDP Simulations	111
4.3-3	Horizontal Radial Bundle Power Distribution at 0 FPD	112
4.3-4	Vertical Radial Bundle Power Distribution at 0 FPD	113
4.3-5	Axial Bundle Power Distribution at 0 FPD	114
4.3-6	Horizontal Radial Bundle Power Distribution at 40 FPD	115
4.3-7	Vertical Radial Bundle Power Distribution at 40 FPD	116
4-3.8	Axial Bundle Power Distribution At 40 FPD	117
4.3-9	Horizontal Radial Bundle Power Distribution at 100 FPD	118
4.3-10	Vertical Radial Bundle Power Distributio at 100 FPD	119
4.3-11	Axial Bundle Power Distribution At 100 FPD	120
4.3-12	Maximum Bundle Power Versus Time	120A
4.3-13	600 MW Reactor Model Face View Showing Initial Loading Of Depleted Fuel	1208
5.2-1	Poison Load Versus Inverse Count Rate, Channel E	135
5.2-1.1	Arrangement Of Start-Up Instrumentation	136
5.2-1.2	Range Of Sensitivity Of Nuclear Instrumentation For Reactor Power Measurement	'137
5.2-2	First Approach To Critical, Channel D, Incore BF ₃ Counter	138

٢

J

LIST OF FIGURES (CONT'D)

NUMBER

÷

9

.

TITLE

PAGE

5.2-3	Channel D Incore BF ₃	139
5.2-4	SDS1 Test - 28 Rods	. 140
5.2-5	SDSI Test - 28 Rods	141
5.2-6	Channel J SDS2 Ion Chamber SDSI Test - 28 Rods	142
5.2-7	SDS1 Test - 28 Rods	143
5.2-8	SDS2 Test - 6 Tanks	144
5.2-9	SOS2 Test - 6 Tanks	145
5.2-10	SDS2 Test - 6 Tanks	146
5.2-11	SDS2 Test - 6 Tanks	147
5.2-12	SDS2 Test - Tank 7 Only	148
5.2-13	SDS2 Test - Tank 7 Only	149
5.2-14	Combined SDS1 + SDS2 Test	150
5.2-15	Comparison With Copper Wire Activation Data	151
5.2-16	Comparison With Calculated Flux Distribution	152
5.2-17	Zone Controller Calibrations	153

LIST OF TABLES

.

i

\$ ---

PAGE

.

.

2.3-1	Reactivity Devices Worths and Maximum Rates	5
3.2.3-1	Lattice Cross-Sections Versus Neutron Irradiation For Fast and Slow Neutrons	43
3.2.3-2	Measured And Calculated Reactivity Worth Of RAPS Adjuster Rods	52
3.2.3-3	Measured And Calculated Reactivity Worth Of Zone Control Rods In Pickering 'A'	53
3.2.3-4	Measured And Calculated Reactivity Worth Of Pickering Shutoff Rods	54
3.2.3-5	Measured And Calculated Data Relating To Bruce Shutoff Rods	55